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\ 2
\,y/ MSTC Organization & Activity

9

Mission: Integrate multiple disciplines to discover and exploit new phenomena
for system optimization and assessment of revolutionary aerospace vehicles

Branch Chief
- Tech Advisor

' Center Director

Prototype Representation & Analysis Methods for Prototype Validation &
Design Exploration Methods Prototypes Assessment

* Parametric Geometry & e Multidisciplinary Analysis e HiFi QTA
Mesh e Appropriate-fidelity Solutions * Prototype Experimental

* Subsystem Representation and Sensitivities Validation

* Design Space Exploration & e Nondeterministic Models * TRL Assessment

Optimization
* Risk-based Design

Shared Activity - Utilize a Unified Framework (SORCER, MODEL Center)

Approved for public release.



§g Some Significant Collaborations

MSTC Collaborative Center with

VPI & SU, WSU, and University of Maryland %VlrgmlaTech [ .

(Formed March 2009) Invent the Future

T

Prof Kapania, Director
Dr. Kolonay, PM WRIGTITTATE

R5ITY

AFRL/RB and WSU Center for Micro Air
Vehicle Studies (Formed June 2010)

Prof Huang, Director

Dr. Beran, PM O

WRIGHT STATE

VIVERSITY

* Prof Missoum, Mr. Basudhar (UA, Tucson) and Dr. Lambe (MSSRC) — RBDO with LCO ’—
* Prof Dong and Mr. Gaston (WSU) — ROM and Simulation of falling bodies -
* Prof McFarland and Mr. Hubbard (UIUC) — Transmission design with nonlinearity

3
Approved for public release.



/¢ MAV Team

Math (6.1) Physics (6.1)
Risk-Based Physics-Based Basic and Applied
Computational Design Analysis of Research in MAVs
Prototyping MAVS * Structural and Flight
Beran (PI1), Snyder (Pl), Beran, Tes.tmg.(Parker) -
Camberos, Lindsley Kolonay validation of structural

and system models

* CFD (Visbal) — verification
of aero models

 Controls Science (Doman)

Basic Research in Computational Design — integration of controls
(2009-2011) models
C * Unsteady Aerodynamics
Y (OL) - validation of aero
models

. . ) ISel;;/ ice-orien tEdtf r am'ewtcfr:( * Perching Technologies
Flapping Sciences Integration R el S S S (Reich) — application of

) ) Design tools (Transition) del
(2009-2011): 6.2 Funded follow-on design aero models

program (MPP, FY12+)

4
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)
%{ Role of Computational Mathematics

P, = Probability of Distribution of critical speeds arises via
Failure (large LCO) PDF variability in air vehicle or environment

Must be sufficiently /
small

Speed at which LCO
achieves maximum

r \
] > Uo

value
Target
. % LCIO d Subcritical
FI |ght SpEEd pTde / Superecritical

Large Vehicles

Acceleration

/C Weak LCO Limit

[Ty 11 G RN STl -~ o o,
w Risk Region »
Flutter Point Limit
(Linearized Analysis)

Computational mathematics needed for physics-based design of reliable vehicles

5
Approved for public release.



\1{ Role of Computational Mathematics (cont.)

e Exploit nonlinear aeroelastic interactions for small aircraft

Unsteady Flow, lida (2004) Unsteady Deformations

e Numerous challenges for design of Micro air vehicles (MAVs)
— Physics Rich (must be a physics-based approach)
— Complex and time-dependent actuations (unsteady)
— Non-conventional geometries and structural topologies
— Power-based integration of propulsion, structure, control components

Computational mathematics needed for physics-based design of MAVs

Akiyoshi lida (2004) — Kogakuiu Univ, http://www.nagare.or.jp/mm/2004/gallery/iida/dragonfly.html

6
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A b
\/ Spectral Formulation for Time-Periodic Systems

Requires
increased Monolithic-time collocation
resolution

Attack high-frequency content
with hp-refinement
Attack Large # of space DOFs
with ROM

Dimensionality of X X

Number of DOFs intime  ___ Xmon
(elements x order+1) Total DOFs

e Uses alocal basis instead of global basis

1) X(£)=Y X))
\\.__Q—cf/ ) m — Order of theq:é))ectral element

BN éVq — Zeroes of the Lobatto-Legendre polynomials

w ¥ ()~ Lagrange polynomial of order m

Kurdi and Beran, “Spectral Element Method in Time for Rapidly Actuated Systems,” JCP, Vol. 227, No. 3, 2008, pp. 1809-1835.

7
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\’Q{ Monolithic-Time Collocation

Arrays corresponding to a
discrete 2D field variable

X t0 t! t? t3

"
X =[X0 XL, X2, X3, ..]

Context for time-periodic and transient solutions

8
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\”}/ Adjoint-Variable Approach

o : adjoint
Solve F...(X. . A) = - S,
mon\*mon o dH oH (| oF oF
— } Sensitivity: —— =—
H(X_.,) = objective d X X oy
F..., = equation residual mon ’ mon )
y, dir&:t
T T
OFren | oH dH_ o OF,,
oX_..) 1 \OX... di alx

High cost:
computed once

analytic or finite-difference (repeat for each

Inexpensive:
variable) about monolithic solution

Goal: Examine challenge of storing X __between step 1 and 2

mon

9
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s 2
\*f,y/ Adjoint Computation for Transient Sensitivity Analysis

Goal: Develop a sensitivity analysis process that scales well with total # DOFs ‘

* Interested in the adjoint-variable approach in anticipation of:
— many design variables (not true of direct and sampling based approaches)
— use of gradient-based optimization (trade global effectiveness for efficiency)

e Some relevant literature

— Nadarajah and Jameson, “Optimum Shape Design for Unsteady Flows with
Time-Accurate Continuous and Discrete Adjoint Methods,” AIAA Journal Vol.
45, No. 7, 2007

— Thomas, Hall, and Dowell, “A Discrete Adjoint Approach for Modeling
Unsteady Aerodynamic Design Sensitivities,” AIAA 2003-0041, 2003

— Mani and Mavriplis, “An Unsteady Discrete Adjoint Formulation for Two-
Dimensional Flow Problems with Deforming Meshes,” AIAA 2007-60, 2007

 Create a sample problem to explore a POD-based approach to
eliminate challenge of storing the forward solution

10
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N Problem Description

“*

Transient analysis of incompressible flow in a square cavity with unsteady lid

Y
() U(tA) e Steady: U =1 (impulsive)

‘ — verify; assess accuracy
e Transient: U = }4(1-cos(f t))

— define H, a function of the transient solution

% ‘! > X — compute sensitivity of H to frequency, f
Flow at rest initially e Streamfunction-vorticity form
dw dw Jn 1 _, , oW oW
—+U—+V—=—V'0 VWY=—0 =—, V=——"
ot oX dy Re Y X

11
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\w Discretization and Time Integration

Explicit/implicit formulation

o (Dn+1 _ (Dn / 1 \

+ (uf)xw + vﬁyu))n = —(6XX +9,, )(1)"*1

dt \ Re/

2"d-order-accurate, central-difference operators

o (6)0( + 6W )an+1 _ _(Dn+1 /‘\(D
U‘I—‘
Repeat for next _ _i -
o time step o 1)=-—3 (W(x,1-A4,)+UbA, )+0(A,)

Y

12
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L

A )
5 Adjoint-Variable Approach

Linear, time invariant

_ - I O 0 0 00
n=1
0 | 0 0 0
n=1 n=1
n=2 ||-h+Gw G, 0 AX —_F
0 0 0 mon mon
n=3 00 0
00 Ly |
Vorticity BC coupling Jacobians arising from convective
Reverse-time terms terms [apply data compression]
A : ;
| 0| |[-L+G),' -S+G,° 00
I 0 0 00 T

-1 +Gy,’ -sT C . oH

0 0 J mon meon

ID DIIQ DIIc

:
. Ly * ) L
! Linearization
'Xmon

13
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Verification (Steady State)

L\ [-.1026, -.1035] Collected* L\ [-.1163, -.1188] Collected*
min- 3% _ 1035 Current min- 3 _1180 Current

o

tina = 20, time step = 0.001 tina = 50, time step = 0.001
Re =100 Re = 1000

*Sahin and Owens, “A Novel Fully Implicit Finite Volume Method Applied to the Driven Cavity Problem — Part I:
High Reynolds Number Flow Calculations,” Int J Num Methods Fluids, Vol. 42, Issue 1, May 2003, pp. 79-88

14
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L

Verification (Transient)

s 2
g

Sah_i_n and Owens (2003)

~ . \ “ P
. / vl \ " ;

* Re=10000

/| | (885855) " U =1

/| ' | e Contour plots of W

I\ N » t=2: agree within 2.8%

[ /| | e e t=8: agree within 4.4%

e e —— * Need to explore mesh

n~—« - _— 31 < -/ and time step
D refinements

|\
t=8 || . -- 7\
(.740, .672)——— / |

7

15
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Verification (Sensitivity)

o t=2 - t=4 - t=6 - =8 - t=10
L ' L'J © 5

U=0.71  U=0.83 U=0.02 U=0.57  U=0.92

e Re=1000 with baseline mesh (101 x 101) 1
e U varies in time U(t) = —(1 — cos(ft))
* Determine sensitivity of H, about f =1 2

* H, evaluated att = 10 2
S : P H.(X - pn
* Finite-difference sensitivity: 6f = 0.0001 2( mon) E( k )
* Sensitivities match to 6 significant digits k
OH,/of (Adjoint) OH,/of (Finite Difference)
4.70771958780 4.7077182309

16
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A )
\/ POD Data Compression for Sensitivity Analysis

e Same conditions as verification case

* Integration time of 10; 1000 time steps

* Collect snapshots once every 10 time steps

* Decimate snapshot set to coarsen

e Evaluate efficiency and accuracy of POD-based
adjoint sensitivity analysis as function of
number of snapshots and modes

t=0to 10 t=0to 10
Cavity snapshots | Compute modes Cavity
analysis POD modes analysis
modes modal
amplitudes
On-the-fly, use the d t=10t0 0

modes and the

: Linearized, adjoint-variable
instantaneous modal

. nsitivi nalysi
amplitudes to sensitivity analysis
reconstruct the flow b
solution

17
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100

Cumulative Energy
o
~

o
o
T

o8|

Convergence of
W-modes from
100 snapshots

B R R
Number of Modes Retained




Solution

Mode 3

0035
-0.04
0048

Mode 1

Mode 5

18
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Mode Amplitude

Mode 1
Mode 2

_0‘57 L L L




v

2

Efficiency and Accuracy

OH,/of using 100 snapshots

Full order 50 modes | 20 modes | 10 modes | 5 modes
4.707719587 4707725353 | 4.711403732 | 4.724862963 | 3.121007234
% Error in 0H,/of
50 modes | 20 modes | 10 modes | 5 modes
100 snapshots | 0.00012 0.078 0.36 -34
20 snapshots - 1.4 3.2 -31
10 snapshots - - 1.6 2.8

20 snapshots = 2% of time-history data
10 modes = 1% of time-history data

High efficiency

Good accuracy

Greatly decrease memory requirement at 2x cost: explore other POD uses

19
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'&/ Structural Design (Inertial Loads Only)

Goal: study transient sensitivity analysis in context of DOF reduction

| * |dentify best thickness distribution for rapidly actuated plate
hﬁ;?;'ﬁﬂ' * Nonlinear modeling of a flapping plate
w =7Hz

* Minimize 6,,, = time-averaged 6

* 256 variables (element thicknesses w/ constraints)
* GBO via MATLAB (fmincon)

0.004 ‘l( "
| |\ ——=—— Time Integration (TI)
. . . . oo e Red d Order (TI
Resultant thickness distribution U O p—— Spectral Eloment |
5 /L ool t 5X design
ave |

speed-u
v A \ P P

0.001} "r - -
Extension: Kinematic/Structural design for wing design i E N, \'\-HH_
with airloads (Stanford et al., SDM10) e o »
. : D0 2 4 6 8 10
~ A i 1 Normalized design cost
*,\?\ , =5 W ZZ %
{7 SZA58 /] /]
: IS0 7 =2 RV V-2 ROM Adjoints = Free
\/ i L \1/

Stanford, Beran, and Kurdi, “Adjoint Sensitivities of Time-Periodic Nonlinear Structural Dynamics via Model Reduction,”
Computers and Structures (to appear), 2010.

20
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\“{ Beam Design (Inertial Loads Only)

* |dentify best area distributions for minimum and maximum time-averaged tip displaced
» Co-rotational FEA formulation; 50 beam elements, each with a different sectional area
* Side constraints on area; GBO via MATLAB (fmincon)
e Compute sensitivities with the adjoint formulation

min.

baseline

max.

2

beam area [cm™]

w

L
=]
L

0.25Haf

tip amplitude

= 15 rad/s

max.

3
e
|3 )

R

min.

4000 6000
computer time [s]

0.1 -
0 2000

8000 10000

0

1000 2000 3000 4000 5000

computer time [s]
21
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W

iy

[95]

K=00I.w =40 rad/s

min. \
4 ]
0 0.2 0.4 0.6 0.8 1
x/L

—=— Newmark, FOM
—=— Newmark, ROM

—a— SE, FOM
—+— SE,ROM

FD, FOM
FD, ROM

Some benefits of
combining SE and ROM in
time-periodic formulation



\*&/ Reliability-Based Design Optimization (RBDO)

Goal: Examine use of transient sensitivity analysis to design a plate wing that is
both light and reliable

e Reliable: wing does not exhibit too
severe a limit-cycle oscillation

e U, > Uquer 2 limit cycle oscillation
e Piston theory aerodynamics (M., > 1)

* Nonlinear von Karman plate FEA
assumed

Unrellable wing uncertain

P. = Probability
of Failure Vary thickness of each
triangular element (200
critical LCO design variables total)
speed

SpeuﬁethghtSpeed

Minimize mass of plate; constrain the probability that LCO,,, > 6 (P < 0)

22
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\“{ Contrasting Approaches

Deterministic Optimization

—

Generally, the designed plate “moves” to the constraint

M., Success: boundary (P; = %)
4 LCO, o < &
min weight = f(d)
. d
2.1-- Failure surface:
_ _ _ bject to:
g=g(x(d, E M_))=6-LCO,, =0 >Y
Failure: \ P g(x(d, E,M_)) > 0;
LCO\mp>6 X = response variables side constraints on d
: > E d = design variables
aluminum
M., Generally, the designed plate “moves” away from the
4 RBDO , “ T
constraint boundary a “safe” distance (P; = o)
min weight = f(d)
d
Failure: Success: subject to:
LCO;mp > LCOmp < & 1— Prob(g <0)/o = 0; side constraints on d
> E

Allen and Maute, “Reliability-based design optimization of aeroelastic structures,” Structural and Multidisciplinary

Optimization, Vol. 27, 2004, pp. 228-242. (Static Aeroelasticity)
23
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\'j RBDO Formulation

e M_, and E are chosen to be uncertain (normal)

Joint PDF

* Map to uncorrelated random variables u, and u,
g=6-1C0,,,=0 in standard normal space

e Compute Most Probable Point (MPP) and
reliability index B

* Approximate failure surface as linear: First Order

Failure region: LCO, > 6 Reliability Method (FORM)

e Compute probability of failure, P.= P¢(B)

* Meet P, constraint using analytical gradients

u,

AIAA Short Course: Introduction to Non-Determinstic Approaches

@ For a given structure, compute MPP
using gradient based optimization:

04

LCO, o - —mmree - Adjoints of

require sensitivitiesof gtou, andu, transient
: : : 1 lution
@ Reduce weight while meeting P, g of zz:\t 3tes used to
constraint using gradient based sens?civities of g

optimization: require sensitivities of
P.to d; (found from sensitivitiesofg ... .. . .. . . .

to d) 'me 1 CO Cartoon

to d,

24
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RBDO and SVM Results

1. Basudhar used Support Vector

Uniform (baseline) panel
Machine and adaptive sampling

0 safe

THE UNIVERSITY | : i baseline: mass = 0.252 k
A 56 ARTTEIA o mm | to.apprommately construct LCO_::; oS08 o pre 0 114%
osh - o 5 failure surface
e 2. Computed P; with MCS on SVM % 12
A - ]
gc)o .2 . boundary (55 samples) ~ GRS I
: -] a X il i o
| o . . 3. Computed P with QMCS AReRs Mos
S | N (Lambe, MSSRC) /
= %o o deterministic optimum: mass =0.178 kg
03¢ T LCO_ =10.01 mm, Pf=50.17%
" 0o ¢y ® Method  PF v
Lo ° °%¢. | FORM 0.0197 12
0 . . . ° . °"3 MCS (10°%) 0.0248 — I
0 02 0A 0.6 0.8 4

Basudhar and Missoum, “Update of explicit limit state functions constructed
using Support Vector Machines,” AIAA 2007-1872, April 2007.

probabalistic optimum: mass = 0.182 kg
LCO__ =717 mm, Pf=0.130%

forward =
RBDO Step  Cost (MATLAB, single CPU) mass 12
Simulation 10 minutes — [
Adjoint 5 minutes 0s
MPP 1 hour

Optimization 4 hours (deterministic), 12 hours (probabilistic)

25
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A\

>

Chakravarthy, Albertani, Evers, “In-Flight Dynamically Adaptive Configurations: Lessons from Live Lepidoptera,”
AlAA 2010-2828, April 2010.

Recent Activities: Rigid-Body MAV Motlons;:

Start to investigate impact of rigid-body motion on MAV performance

Prof. Haibo Dong (WSU), Mr. Zachary Gaston (WSU)
Mr. Tim Broering (UL)

f' HKUN|VERSlTY OF

“2LOUISVILLE

Digital Image Correlation by Prof.
Albertani using live specimens of
Lepidoptera

]

Biodiversity, Gainesville, FL

Cameral Camera 2 Abdomen tp
McGuire Center for Lepidoptera and =

WRIGHT STATE

Time {sec)

Need to include rigid-body motions and body flexibility in bio-inspired MAV models

26
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\ 2
\%{ Plan for Rigid-Body Coupling

 Emphasize passive motions first: falling bodies in quiescent flow

— Pesavento and Wang, “Falling Paper: Navier-Stokes Solutions, Model of
Fluid Forces, and Center of Mass Elevation”, PRL, Vol. 93, No. 14, 2004

— Modify high-fidelity tools to repeat 2D simulations and extend in 3D;
validate at WSU with high-speed photography (want comparisons)

— Calibrate quasi-steady models (like those used in flapping)
 Examine influences of gust and variability on falling motions
— Introduce variability into quasi-steady models (e.g., how is seed dispersal
impacted by winds?)
e Re-examine design procedures that have been developed so far:
want MAVs that are robust to gust

27
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v

% Some Typical

Motions

wind

Trajectories computed with

] . .
10 cm/sec { 0 quasi-steady aerodynamics
¢ = chord -_—> f; ) (Wang et al.)
h = thickness Y /5
\" (_‘__‘\ 1
P = water 0 pY ;; :;{
= aluminum R
Ps jf 2! flutter: =h/c=1/14
ellipse tumble & + tumble: B=h/c=1/5
w/ wind ¢ J
X
flutter ) A
Pr no wind <~, L
v A ¥ ;
1 J - tumble
- Y f
gJ v *  no wind
flutter (descent speed =
oo w/ wind 11.5 cm/sec)
* Will explore impact of variability (physical
Xf and model) on distribution of landing
g locations
* Developed transient sensitivities (direct):
e ee e e e EECEE = = role in selecting bodies with more
O, desirable falling characteristics?
28
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High-Fidelity Results

Re = 40 (Stationary) Re = O[103] (Falling)

Overture

Preliminary VICAR3D result

WRIGHT STATE WRIGHT STATE

29
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A\ 4 Recent Activities (cont.)

McFarland and Hubbard

e Start to explore role of actuation mechanism in MAV design

— Investigate physical interactions between a flapping wing and the
mechanism that flaps the wing (e.g., transmission of inertial loads)

I3 I I3 T T T
L 2 g =1 -/,__,r— —. y :: 1
e e P ., P = i tu ) -
TN [ T T — W . = I // \\\-I
. o | N
- & i
S m . m — = 0F ‘lr\ 1
[ g ~
| o .
| | _ b 3 > )
5] [ o =11 - il

e w(t) —=n(l) } = (L)

Lime (g

e Developing compliant mechanisms via topological optimization
— Link mechanism with generated inertial/aero loads (MAO 2010)

Understanding/modeling energy transfers between mechanism and wing critical ‘

30
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A 4 Concluding Remarks

e Sensitivity analysis of transient/time-periodic systems serves an

important role for design of both large and small aircraft

— Constraint boundaries often nonlinear (LCO and aeroelastic response in
gust); strive for physics-based approaches not reliant on safety factors

— Essential for design of flapping wing MAVs; strive for physics-based
approaches that account for gust
Lessons learned through unsteady sample problems

— POD is a straightforward means for data compression in sensitivity
analysis for large systems; extensions using POD ripe for study

— Adjoint vectors in ROM formulation computed virtually for free
(tailoring of structure for nonlinear response during rotary actuation)

— Adjoint-based sensitivities work well in an RBDO context; want to
extend (e.g., transonic, SVM, SORM) based on lessons learned
Interesting departure points for further study: variability in

motion subject to gust, mechanism design

31
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/ Recent Publications

e Stanford, B., and Beran, P., “Adjoint Sensitivities of Time-Periodic Nonlinear Structural

Dynamics via Model Reduction,” Computers and Structures (to appear), 2010.

e Stanford, B., and Beran, P., “Analytical Sensitivity Analysis of an Unsteady Vortex Lattice
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§g AMP Team Composition (WPAFB)

Mission: Integrate multiple disciplines to discover and exploit new phenomena
for system optimization and assessment of revolutionary aerospace vehicles

Branch Chief

Center Director )
- Tech Advisor

Analysis Methods for Prototypes
¢ Dr. José Camberos — On detail as RB Deputy Chief Scientist
e Dr. Chris Chabalko — Postdoc (NRC, UTC)
*Dr. Ned Lindsley — Supporting prototype validation/assessment

® Dr. Aaron McClung — Civil Servant, formerly NRC

® Mr. John Moore — Undergraduate Co-op (University Florida)
e Mr. Michael Robbeloth — Computer Scientist, DSA

* Dr. Rich Snyder

e Dr. Bret Stanford — Postdoc (NRC)

e Dr. Phil Beran - Lead
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\'j Methods Development Strategy

Develop methods: start
with low-dimensional —
formulations and move

towards high-dimensional

Goal: Multifidelity framework
built on new methods

Development of Application and Validation
New Methods Extension of High- through physical
« Time-Periodic Fidelity Methods experiment
Analysis * Navier-Stokes * Water channel
« Sensitivity Analysis (OVERFLOW) (OL, AVT-149)
e Reduced Order * Beams, Plates, * Free flight (TU
Modeling Shells models Delft, AVT-184)

* Aeroelasticity * Aeroelastic
ground-test
facility (Parker)

* Uncertainty
Characterization * Vortex methods
(medium fidelity)

mee—— e

Characterize physical Assess validity of all
limitations of lower methods
fidelity approaches
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A\ Y4 Application to Insect Wing

Berman and Wang, “Energy-Minimizing Kinematics in Hovering Insect Flight,” JFM, Vol.
582, 2007 (Rigid wing with stroke-plane deviations)
Feathering angle Prescribed () and
realized (n) angles
* mass-spring-damper
e inertial & aero loads

N

\ N Wing axis (in
Y - X-Y plane)

—

\ Large snap rotations favored
X

Quasi-steady (QS) aerodynamics (Berman & Wang)

=
1

Power reduction from initial design:
* 55% for unconstrained acceleration

* 40% for constrained acceleration
Looking at inertial power contribution

Pitch

Optimized fruitfly
wing kinematics
\ \ , . , (235 Hz)
-0.2 0.2 0.4 06 0.8 1 1.2
Kurdi, Beran, Stanford, and Snyder, “Optimal Actuation of Nonlinear Time
Resonant Systems,” Structural and Multidisciplinary Optimization,
Published online June 2009.
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Understanding
Complex Physics

® Study Hawkmoth physics using
Navier-Stokes (NS) simulation

® (Collaboration with AFIT
® Hawkmoth kinematics (hover)

® What's new?
®  OVERFLOW 2.1 Elastic
(5th/2M-order in
space/time)
"  Prescribed wing
deformations
®  Variations in kinematics

Planform Study Fx (N) Fy (N) Fz (N)
Rectangular Current Work 724e-04 -1.46e-03 7.26e-03 ® Moderate flexibility increases
Manduca sexta  Current Work 8.42e-04 -1.65e-03 6.16e-03 hover efficiency

Agrius convolvuli  Aono and Liu [1]  1.20e-03 -1.20e-03 8.48e-03

McClung, “Influence of Structural Flexibility on Flapping Wing Propulsion,” AFIT Dissertation, April 2009
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